Coloring Locally Bipartite Graphs on Surfaces

نویسندگان

  • Bojan Mohar
  • Paul D. Seymour
چکیده

It is proved that there is a function f : N → N such that the following holds. Let G be a graph embedded in a surface of Euler genus g with all faces of even size and with edge-width ≥ f(g). Then (i) If every contractible 4-cycle of G is facial and there is a face of size > 4, then G is 3-colorable. (ii) If G is a quadrangulation, then G is not 3-colorable if and only if there exist disjoint surface separating cycles C1, . . . , Cg such that, after cutting along C1, . . . , Cg, we obtain a sphere with g holes and g Möbius strips, an odd number of which is nonbipartite.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Locally Identifying Coloring of Graphs

We introduce the notion of locally identifying coloring of a graph. A proper vertex-coloring c of a graph G is said to be locally identifying, if for any adjacent vertices u and v with distinct closed neighborhood, the sets of colors that appear in the closed neighborhood of u and v are distinct. Let χlid(G) be the minimum number of colors used in a locally identifying vertex-coloring of G. In ...

متن کامل

An On-line Competitive Algorithm for Coloring P_8 -free Bipartite Graphs

The existence of an on-line competitive algorithm for coloring bipartite graphs remains a tantalizing open problem. So far there are only partial positive results for bipartite graphs with certain small forbidden graphs as induced subgraphs, in particular for P7-free bipartite graphs. We propose a new on-line competitive coloring algorithm for P8-free bipartite graphs. Our proof technique impro...

متن کامل

Weighted coloring on planar, bipartite and split graphs: Complexity and approximation

We study complexity and approximation of min weighted node coloring in planar, bipartite and split graphs. We show that this problem is NP-hard in planar graphs, even if they are triangle-free and their maximum degree is bounded above by 4. Then, we prove that min weighted node coloring is NP-hard in P8-free bipartite graphs, but polynomial for P5-free bipartite graphs. We next focus on approxi...

متن کامل

On interval edge-colorings of bipartite graphs of small order

An edge-coloring of a graph G with colors 1, . . . , t is an interval t-coloring if all colors are used, and the colors of edges incident to each vertex of G are distinct and form an interval of integers. A graph G is interval colorable if it has an interval t-coloring for some positive integer t. The problem of deciding whether a bipartite graph is interval colorable is NP-complete. The smalle...

متن کامل

Hard coloring problems in low degree planar bipartite graphs

In this paper we prove that the PRECOLORING EXTENSION problem on graphs of maximum degree 3 is polynomially solvable, but even its restricted version with 3 colors is NP-complete on planar bipartite graphs of maximum degree 4. The restricted version of LIST COLORING, in which the union of all lists consists of 3 colors, is shown to be NP-complete on planar 3-regular bipartite graphs. © 2006 Els...

متن کامل

Interval non-edge-colorable bipartite graphs and multigraphs

An edge-coloring of a graph G with colors 1, . . . , t is called an interval t-coloring if all colors are used, and the colors of edges incident to any vertex of G are distinct and form an interval of integers. In 1991 Erdős constructed a bipartite graph with 27 vertices and maximum degree 13 which has no interval coloring. Erdős’s counterexample is the smallest (in a sense of maximum degree) k...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Comb. Theory, Ser. B

دوره 84  شماره 

صفحات  -

تاریخ انتشار 2002